【专稿推荐】李雄威, 王昕, 顾佳伟, 等. 考虑火电深度调峰的风光火储系统日前优化调度
今日导读与您分享,欢迎关注!
考虑火电深度调峰的风光火储系统日前优化调度
李雄威1, 王昕1, 顾佳伟2, 徐家豪1
1. 国家能源集团新能源技术研究院有限公司,北京 102209;
2. 华北电力大学 控制与计算机工程学院,北京 102206
引用本文
Cited
李雄威, 王昕, 顾佳伟, 等. 考虑火电深度调峰的风光火储系统日前优化调度[J]. 中国电力, 2023, 56(1): 1-7, 48.
LI Xiongwei, WANG Xin, GU Jiawei, et al. Day-ahead optimal dispatching of wind-solar-thermal power storage system considering deep peak shaving of thermal power[J]. Electric Power, 2023, 56(1): 1-7, 48.引言
大力发展新能源、推进能源结构转型发展,是落实中国碳达峰、碳中和目标的重要举措。近些年来,随着中国风电、光伏发电并网装机规模快速增长,电力系统正朝着高比例新能源方向发展。然而,由于风电、光伏发电出力具有随机性、间歇性和波动性,不仅给规模化新能源并网消纳带来了挑战,还增大了电网安全稳定运行的风险[1-3]。深入挖掘火电机组深度调峰能力,研究火电与风电、光伏发电多能互补优化调度方法,对于实现规模化新能源的并网消纳具有重要意义[4-6]。
关于多能互补优化调度问题,国内外学者已开展了较多研究[7-9]。文献[10]考虑常规机组低负荷运行和爬坡工况的发电成本计算模型,建立了风光火蓄储多能互补优化调度模型,以系统总运行成本最小为优化目标,利用动态惯性权值粒子群算法对模型进行了求解。文献[11]考虑系统网损、负荷波动和微网运行经济性,提出了多微网与配电网联合调度的双层优化模型。文献[12]建立了一种考虑最优弃能率的风光火储联合系统双层优化调度模型,在上层模型中以电网净负荷方差最小为优化目标,在下层模型中以电网运行成本最低为优化目标,对双层模型进行了优化求解。文献[13]考虑发电成本、污染物治理成本以及可再生能源弃电成本,建立了风光水火蓄联合发电系统优化调度模型,并针对春夏秋冬的典型日进行了仿真计算。目前,关于火电与风电、光伏发电多能互补优化调度研究,火电机组往往考虑进行基本调峰的常规机组,并联合水电、抽水蓄能电站、储能系统等平抑风电、光伏发电出力和负荷波动。而面向含高比例新能源的发电系统,利用火电深度调峰和电化学储能调节进行风光火储多能互补运行优化的研究相对较少。随着新能源在电力系统中占比不断提高,火电机组将面临深度调峰、频繁爬坡等运行新工况,需要建立考虑火电机组深度调峰的系统运行成本模型[14-16]。因此,本文考虑火电机组深度调峰和爬坡成本、污染物惩罚成本、储能系统运行成本及新能源弃电惩罚成本,建立计及火电深度调峰的风光火储系统日前优化调度模型。分别以风光出力最大、净负荷波动最小和系统运行成本最低为目标对模型进行优化求解,并研究火电机组不同调峰深度对新能源消纳和系统运行经济性的影响。1.
考虑火电机组深度调峰的成本计算模型
1.1 火电机组调峰阶段
针对规模化新能源并网问题,为了平抑风电、光伏发电的波动性,火电机组将面临频繁爬坡和深度调峰等运行新工况。因此,需要面向高比例新能源并网场景,提出考虑火电机组深度调峰的成本计算方法。火电机组的调峰过程根据其出力状态,可以分为基本调峰阶段和深度调峰阶段。对于基本调峰阶段,火电机组的出力范围为其额定出力到最小技术出力(一般为额定功率的45%~50%)。随着风电、光伏发电装机规模的不断扩大,高比例新能源并网将对新能源消纳及电网安全稳定运行带来较大挑战。对于有调节能力的火电机组,需要提高深度调峰能力和运行灵活性,使得机组能够低于其最小技术出力运行。然而,对于深度调峰阶段,火电机组运行煤耗会有较大增加,需要考虑由此增加的燃料成本。
1.2 燃料成本
对于火电机组常规运行工况,一般采用二次方公式对煤耗与运行负荷的关系进行拟合。因此,对于基本调峰阶段,火电机组运行的燃料成本f为
1.3 爬坡成本
火电机组频繁爬坡也会引起煤耗增加,利用机组爬坡速率的线性函数表示机组的爬坡成本g[10],即
2.
风光火储系统日前优化调度模型
2.1 目标函数
式中:f2为净负荷方差;
2.1.3 系统运行成本最低
运行经济性是综合能源系统考虑的重要因素[17-18]。为了降低系统运行成本,以系统运行成本最小为目标,即式中:zt1、zt2、zt3分别为t时刻火电机组的SO2、NOx及粉尘的排放成本,本文分别取0.262元/t、0.00047元/t、0.00078元/t[13]。
(3)储能系统的运行成本由储能装置的运行和折旧成本构成,即式中:ρsoc 为储能系统的运行成本系数,本文取83.2元/(MW·h)[12]。
(4)弃电惩罚成本为弃风、弃光成本之和,即式中:γw 、 γpv 分别为弃风、弃光的惩罚费用,本文均取0.6元/(kW·h)[15];
2.2 约束条件
3.
算例分析
3.1 算例设置
本文针对含高比例新能源的风光火储联合发电系统进行日前优化调度研究,风光火储联合发电系统的结构如图1所示。其中,风电场的额定容量为800 MW,光伏电站的额定容量为1400 MW;火电机组的额定容量为1000 MW,参与深度调峰,机组最低出力为额定容量的30%;储能系统初始存储电量为700 MW·h,最大存储电量为1400 MW·h,最大充放电功率为700 MW,荷电比例上限为0.9,荷电比例下限为0.1,充电效率和放电效率均为95%。
图1 风光火储联合发电系统结构
Fig.1 Structure of wind-solar-thermal-power storage system
图2 风电预测出力、光伏预测出力及典型日负荷和净负荷曲线
Fig.2 Forecast wind power output, forecast photovoltaic output, and typical daily load and net load curves
图3 1 000 MW火电机组煤耗与运行负荷拟合曲线
Fig.3 Fitted curve between coal consumption and operating load of a 1000 MW thermal power unit
为了分析不同优化目标对日前优化调度结果的影响,本文设定了3种不同的优化目标。(1)风电、光伏联合出力最大;(2)净负荷波动最小;(3)系统运行成本最低。分别按照3种优化目标,求解风光火储联合发电系统的日前优化调度策略。在此基础上,将火电机组的调峰深度分别设为80%、60%和50%,以系统运行成本最低为优化目标,求解风光火储联合发电系统的日前优化调度策略。在Matlab环境中通过YALMIP工具箱调用CPLEX求解器对本文建立的风光火储优化调度模型进行求解。
3.2 优化调度结果分析3种不同优化目标下风光火储联合发电系统的出力如图4所示。由图4 a)可知,以风电、光伏联合出力最大为优化目标,通过火电机组深度调峰和快速变负荷运行,以及储能系统调节,成功实现了削峰填谷。由图4 b)可知,以净负荷波动最小为优化目标,净负荷几乎没有波动,火电机组运行平稳,但出现了明显的弃风弃光。由图4 c)可知,以系统运行成本最低为优化目标,与优化目标1相比,火电机组同样需要深度调峰和快速变负荷运行,但储能系统调节次数减少,且充放电量较少。图4 3种优化目标下风光火储日前优化调度结果
Fig.4 Day-ahead optimal dispatching results under three optimization objectives
表1 3种优化目标下风光火储系统的优化结果
Table 1 Optimization results of wind-solar-thermal power storage system under three optimization objectives
图5 不同调峰深度下风光火储日前优化调度结果
Fig.5 Day-ahead optimal dispatching of wind-solar-thermal power storage system under different peak-shaving depths
表2 不同调峰深度下风光火储系统的优化结果
Table 2 Optimization results of wind-solar-thermal power storage system under different peak-shaving depths
4.
结论
为促进规模化新能源的经济消纳,本文提出了考虑火电机组深度调峰和频繁爬坡等运行新工况的火电机组成本计算方法,并计算污染物惩罚成本、储能系统运行成本及新能源弃电惩罚成本,建立了风光火储综合能源系统日前优化调度模型。针对含高比例新能源的风光火储系统,通过对某典型日的优化调度策略进行求解,得出以下结论。
(1)本文所建立的模型能够分别以风光出力最大、净负荷波动最小和系统运行成本最低为优化目标,对风光火储优化调度策略进行求解,通过风光火储多能互补协同运行能够减少弃风弃光,平抑净负荷波动和降低系统运行成本;(2)当火电机组调峰深度由50%增加到80%,新能源弃电率由16.86%下降到3.62%,表明提高火电深度调峰能力能够更好地平抑新能源的波动,从而有效促进新能源消纳。作者介绍
李雄威(1985—),男,通信作者,博士,高级工程师,从事综合能源技术研究,E-mail:xiongwei.li.j@chnenergy.com.cn.
往期回顾
◀【专稿推荐】单葆国, 刘青, 张莉莉, 等. 新形势下“十四五”后三年中国电力需求形势研判◀【专稿推荐】赵建立, 向佳霓, 汤卓凡, 等. 虚拟电厂在上海的实践探索与前景分析◀【专稿推荐】李敬如, 万志伟, 宋毅, 等. 国外新型储能政策研究及对中国储能发展的启示
◀【专稿推荐】单葆国, 冀星沛, 许传龙, 等. 近期全球能源供需形势分析及中国能源电力保供策略
◀【专稿推荐】冯凯辉, 李琼慧, 黄碧斌, 等. 中国农村能源发展关键问题
◀【专稿推荐】马晋龙, 孙勇, 叶学顺. 欧洲海上风电规划机制和激励策略及其启示
◀【专稿推荐】董昱, 董存, 于若英, 等. 基于线性最优潮流的电力系统新能源承载能力分析
◀【专稿推荐】张运洲, 陈宁, 黄碧斌, 等. 基于系统成本的新能源等效上网电价计算方法及应用
编辑:杨彪
校对:于静茹
审核:方彤
声明根据国家版权局最新规定,纸媒、网站、微博、微信公众号转载、摘编《中国电力》编辑部的作品,转载时要包含本微信号名称、二维码等关键信息,在文首注明《中国电力》原创。个人请按本微信原文转发、分享。欢迎大家转载分享。